Protease- and acid-catalyzed labeling workflows employing (18)O-enriched water.
نویسندگان
چکیده
Stable isotopes are essential tools in biological mass spectrometry. Historically, (18)O-stable isotopes have been extensively used to study the catalytic mechanisms of proteolytic enzymes(1-3). With the advent of mass spectrometry-based proteomics, the enzymatically-catalyzed incorporation of (18)O-atoms from stable isotopically enriched water has become a popular method to quantitatively compare protein expression levels (reviewed by Fenselau and Yao(4), Miyagi and Rao(5) and Ye et al.(6)). (18)O-labeling constitutes a simple and low-cost alternative to chemical (e.g. iTRAQ, ICAT) and metabolic (e.g. SILAC) labeling techniques(7). Depending on the protease utilized, (18)O-labeling can result in the incorporation of up to two (18)O-atoms in the C-terminal carboxyl group of the cleavage product(3). The labeling reaction can be subdivided into two independent processes, the peptide bond cleavage and the carboxyl oxygen exchange reaction(8). In our PALeO (protease-assisted labeling employing (18)O-enriched water) adaptation of enzymatic (18)O-labeling, we utilized 50% (18)O-enriched water to yield distinctive isotope signatures. In combination with high-resolution matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), the characteristic isotope envelopes can be used to identify cleavage products with a high level of specificity. We previously have used the PALeO-methodology to detect and characterize endogenous proteases(9) and monitor proteolytic reactions(10-11). Since PALeO encodes the very essence of the proteolytic cleavage reaction, the experimental setup is simple and biochemical enrichment steps of cleavage products can be circumvented. The PALeO-method can easily be extended to (i) time course experiments that monitor the dynamics of proteolytic cleavage reactions and (ii) the analysis of proteolysis in complex biological samples that represent physiological conditions. PALeO-TimeCourse experiments help identifying rate-limiting processing steps and reaction intermediates in complex proteolytic pathway reactions. Furthermore, the PALeO-reaction allows us to identify proteolytic enzymes such as the serine protease trypsin that is capable to rebind its cleavage products and catalyze the incorporation of a second (18)O-atom. Such "double-labeling" enzymes can be used for postdigestion (18)O-labeling, in which peptides are exclusively labeled by the carboxyl oxygen exchange reaction. Our third strategy extends labeling employing (18)O-enriched water beyond enzymes and uses acidic pH conditions to introduce (18)O-stable isotope signatures into peptides.
منابع مشابه
Ecofriendly synthesis of biscoumarin derivatives catalyzed by EDTA-modified magnetic animal bone meal nanoparticles in water
In this research, magnetic animal bone meal nanoparticles functionalized with ethylenediaminetetraacetic acid (Fe3O4@ABM-EDTA) is reported as a green recyclable catalyst that catalyzed synthesis of biscoumarin derivatives in water. The catalyst was characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermogra...
متن کاملEcofriendly synthesis of biscoumarin derivatives catalyzed by EDTA-modified magnetic animal bone meal nanoparticles in water
In this research, magnetic animal bone meal nanoparticles functionalized with ethylenediaminetetraacetic acid (Fe3O4@ABM-EDTA) is reported as a green recyclable catalyst that catalyzed synthesis of biscoumarin derivatives in water. The catalyst was characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermogra...
متن کاملIsotopic (18O) shift in 31P nuclear magnetic resonance applied to a study of enzyme-catalyzed phosphate--phosphate exchange and phosphate (oxygen)--water exchange reactions.
An isotopic shift of the (31)P nuclear magnetic resonance due to (18)O bonded to phosphorus of 0.0206 ppm has been observed in inorganic orthophosphate and adenine nucleotides. Thus, the separation between the resonances of (31)P(18)O(4) and (31)P(16)O(4) at 145.7 MHz is 12 Hz and, in a randomized sample containing approximately 50% (18)O, all five (16)O-(18)O species are resolved and separated...
متن کاملA new strategy of using O18-labeled iodoacetic acid for mass spectrometry-based protein quantitation.
A new O(18) labeling protocol is designed to assist quantitation of cysteine-containing proteins using LC/MS. Unlike other O(18) labeling strategies, the labeling is carried out at the intact protein level (prior to its digestion) during reduction/alkylation of cysteine side chains using O(18)-labeled iodoacetic acid (IAA). The latter can be easily prepared by exchanging carboxylic oxygen atoms...
متن کاملAliphatic alcohols oxidation with Hydrogen Peroxide in water catalyzed by supported Phosphotungstic acid (PTA) on Silica coated MgAl2O4 nanoparticles as a recoverable catalyst
In this paper, a novel catalyst (MgAl2O4@SiO2-PTA) was proposed for the green oxidation of aliphatic alcohols. The resultant composite was characterized by different techniques, such as X-ray diffraction (XRD), SEM, FT-IR, EDX and Brunauer-Emmett-Teller (BET) surface area analysis. The prepared nanocomposite was used as a catalyst for oxidation of aliphatic alco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 72 شماره
صفحات -
تاریخ انتشار 2013